<optgroup id="iirxk"><li id="iirxk"></li></optgroup>
  • 您現在的位置: 范文先生網 >> 教學論文 >> 數學論文 >> 正文

    數學美的哲學斷想

    時間:2006-11-21欄目:數學論文

     數學中處處蘊涵著美——形式的美與內容的美,內隱的美與外顯的美,婉約的美與奇異的美,獨立的美與統一的美,這些美自然而不矯作,高貴而不俗庸,沉穩而不浮躁,冷峻中不失靈動,奇異中又不乏和諧,這些美反映了一種自然的秩序與規律,同時也更加彰顯了人的最深層次的本質力量對象化的外部結果。如果將彪炳史冊的數學大家們比作美的締造者與傳播者,我想,這一點也不為過。這是因為,在他們深沉的筆觸之下所流淌出來的和諧而雋永的數學樂章,歷久彌新,時刻能讓后學者感受到……
      一組精要的數學符號,一個簡單的數學公式,一條言簡深邃的數學定理,一種精彩絕倫的數學構想……,無不閃現著這些數學巨人們思想深處那汩汩不息的美感之源所散發出的激情與脈動,其升騰出的美的氤氳,籠罩著一種思維上的靈逸和深遠,帶給人們一絲迷醉其中的淡淡情愫。拉丁格言說得好:“美是真理的光輝。”如果將這句話投射在數學領域中,我想,大量的事例都可印證其簡約的表述之下所蘊涵的深遠意境。但從更廣泛的意義看,美又何嘗不是一種力量,一種蓄以待發的、存乎自然與人最深處的追求本真的力量,一種屬性固有與理性追求的完美統一。不難體會到,數學的美——一種獨特的、兼具震撼力的美,本質上包含了兩個側面的含義:主觀意義上的數學美與客觀意義上的數學美,即數學美既是一種人的能動的主觀感受與思維表達,又是內蘊于客觀世界的現實存在。從這兩個側面出發,以一種全面、深刻、辯證的數學美學認識為基礎,站在哲學平臺上,對數學美的本質做進一步的剖析與探討工作,既有理論的完善意義,又具有數學美育實踐的指導與促進意義。鑒于此,筆者拙筆寫下了這篇斷想。
      1 數學美的存在性——客觀世界的反映
      在客觀世界紛繁蕪雜的各種變化與現象中,時刻貫穿、孕育著各種各樣的美。美是雜亂中的秩序,是變化中的規律。美是客觀世界的本質屬性,是引領整個客觀世界向前發展的內在動力。數學美作為科學美的重要方面,就是對自然界中客觀存在的秩序與規律從數與形的角度給予反映和揭示。具體來說,對于美的存在性,我們可以從兩個方面來認識與考察。
      首先,客觀世界中處處滲透與體現著數學美,數學美是對客觀世界內在規律的反映。對于數學美與客觀世界之間的相互聯系,其實早在古希臘時期,畢達哥拉斯學派就開始著手研究。畢氏學派在研究音樂樂理的諧音與天體運行的軌道時,發現二者在數量關系上都滿足整數比,從而就此得出結論“宇宙間萬物的總規律,其本質就是數的嚴整性和和諧性”,“美是和諧與比例”。在這樣的認識基礎上,畢氏學派試圖從數和數的比例中求得美和美的形式,并終于從五角星形中發現了“黃金分割”,進而得到黃金比。這是數學美學認識史上的一大突破。從古希臘到現在,黃金比在各種造型藝術中都有著重要的美學價值。現代科學研究甚至表明,黃金比在現代最優化理論中也有著應用價值,如優選法中的0.618法。即使在現代醫學保健領域中,都可以處處感受到它的存在與神奇。最令人驚奇的是,很多生物的形體比例也是等于黃金比。難道它們都懂得優選法,自覺采用黃金比?不!這只能證明美學家的斷言:“美是一切事物生存和發展的本質特征。”
      其次,溯源于客觀世界的數學理論內部也充滿著數學美。這種美本質上間接地表征了客觀世界的固有規律。徐利治教授曾說過:“作為科學語言的數學、具有一般語言文學與藝術所共有的美的特點,即數學在其內容結構和方法上也都具有自身的某種美……如數學概念的簡單性、統一性,結構系統的協調性、對稱性,數學命題與數學模型的概括性、典型性和普遍性,還有數學中的奇異美等。”古代哲學家、數學家普洛克拉斯甚至斷言:“哪里有數,哪里就有美。”的確,數學中美的例子可謂俯拾即是。例如,皮亞諾算術公理系統,就是邏輯結構簡單美的典范;希爾伯特以非構造方法成功解決了代數不變量理論中的戈丹問題,體現數學方法的簡單美;代數中的共扼根式、共扼復數、對稱多項式、對稱矩陣等。幾何中的軸對稱、中心對稱、鏡面對稱等,都表現了數學中的對稱美;運算、變換、函數,這三個分別隸屬代數、幾何、分析等不同數學分支的重要概念。在集合論建立之后,便可以統一于映射的概念,這體現了數學中的統一美……。近代科學家開普勒更是一針見血地指出:“數學是這個世界之美的原型。”言簡意賅、意蘊深遠的一句話,給人以深刻的思想啟迪。
      2  數學美的獨特性——內隱而深邃的理智美與理性精神
      英國著名哲學家、數學家羅素曾經這樣描述過數學的美:“數學,如果正確地看它,不但擁有真理,而且也具有至高的美,正象雕刻的美,是一種冷而嚴肅的美、這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂那些華麗的裝飾,它可以純凈到崇高的地步,能夠達到嚴格的只有最偉大的藝術才能顯示的那種完滿的境地。”羅素的這番精彩論述以“冷而嚴肅”“純凈”“崇高”“嚴格”“完滿的境地”等字眼來形容數學的美,辭藻華麗且思想深刻,將數學美的與眾不同淋漓盡致地展現在人們面前,再進一步看,正如前面所論述的數學美的本質包含了兩個側面(主觀意義和客觀意義)。因此,從主觀與客觀及其相互聯系統一的角度來研究數學美的獨特性,必然會有助于我們更好地去理解與認識數學美的內在本質。
      第一,數學的美是內在的美、隱蔽的美、深邃的美,美在數學思想內部,數學美是客觀規律的反映,但這種反映不是像照鏡子那樣直接反映,而是人的能動反映,是自然社會化的結果,是人的本質力量對象化的結果。它所反映的不單純是客觀事物,而是融合了人的思維創造。因此,要領悟數學美必須透過,“抽象、枯燥”的符號、公式及定理等洞察其內部的數學思想:比如愛因斯坦創立的相對論可謂內容豐富之極,但如果用式子表示的話,卻極其簡單:
      E=mc[2],P=mv(E為能量,P為動量,m為質量,c為真空中的光速)并非所有人都能意識到其中的美。其實,這兩個公式代表了愛因斯坦對人類貢獻的精華,它們深刻地揭示了微觀、宏面、宇觀的無數質能變化現象的規律,但式子卻非常簡單。其用字之少,內容之豐富,充分體現了數學的簡單美。再比如,數學家們把等式
      e[πi]+1=0
      視為最優美的公式,美在哪里?其實,這個式子將算術中的"1""0",代數中的"i",幾何中的“π”,分析中的"e"神奇地統一在了一起,即它們相會于天橋:e[iθ]=cosθ+isinθ(在該式中令θ=π就可得到上式),它溝通了三角函數與指數函數之間的內在聯系,充分體現了數學的統一美。
      第二,從價值追求的角度看,數學美實質上體現了人的審美精神,這種精神說到底是一種理性的精神,恰恰是這種精神,“使得人類的思想得以運用到非常完善至美的程度”,即“完滿的境地”;正是這種精神,“從一定程度上影響人類的物質、道德和社會生活,以試圖回答有關人類自身提出的一些問題”;正是這種精神,“使得人們能盡可能地去理解、了解、控制自然,掌握客觀世界的規律”;正是這種精神,“使人們有可能去探求和確立已經獲得的知識的最深刻的、最完美的學科內涵”,并使之“純凈到崇高的地步”。這是筆者從羅素的論述中感悟到的數學美的精神層面的獨特內涵。

      3 數學美的驅動性——個人創新與數學發展的內部動力
      對于數學美的追求歷來是科學家進行發現與創新的重要內部驅動力。阿達瑪與彭加勒都曾從心理學角度闡釋美與發明創造之間的關系。他們認為,創造的本質就是做出選擇,就是要拋棄不合適的方案,保留合適的方案,而支配這種選擇的正是科學美感。正如阿達瑪所說的:“科學美感,這種特殊的美感,是我們必須信任的向導,”因為,“唯有美感能預示將來的研究結果是否會富有成果。”數學史的研究表明,希臘幾何學家之所以研究橢圓,可以說除了美感之外,再沒有什么其他動力了。著名物理學家麥克斯韋在沒有任何實驗依據的情況之下,僅從數學美的考慮出發,將實驗得出的電磁理論方程重新改寫,以求得方程形式上的對稱優美。令人驚異的是,改寫的方程競被后來的實驗證實了,而且利用方程還可推導出一系列令人陶醉的結果,電磁理論決定性的一步就這樣跨出了。這不能不讓人相信美的確具有如此巨大的推動力與支配力。誠如愛因斯坦所言:“照亮我的道路,并且不斷地給我新的勇氣去愉快地正視生活的理想,是善、美和真。”事實上,愛因斯坦所提出的科學思想,有很多是出于美學而不是邏輯的考慮。他對實驗和理論不相符的憂慮,甚至遠遠不及對基本原理的不簡潔、不和諧所引起的憂慮,而這正是刺激他的思想的源泉。
      從廣泛的意義上看,對數學美的追求也在不斷推動整個數學向前發展,數學發展的歷史不啻是一部追求數學美的前進史。比如,在數學發展的歷史長河中,數學家們堅持不懈地追求數學的統一性,從而相繼誕生出三部數學巨著:歐幾里德的《幾何原本》,羅素與懷德海合著的《數學原理》,布爾巴基學派的《數學原本》。再如,出于邏輯簡單性的考慮,數學家們很早就對歐氏平行公理的自明性和獨立性產生懷疑,經過幾個世紀的研究,最終導致非歐幾何的建立。此外,對于奇異性的追求也同樣推動了數學發展,對此,哥德爾不完備定理的提出可以說是一個極好的例子,紐曼和耐格爾曾把這一定理稱為“數學與邏輯學發展史中的里程碑”。著名物理學家惠勒則更認為:“即使到了公元5000年,如果宇宙仍然存在,知識也仍然放射出光芒的話,人們就將仍把哥德爾的工作……看成一切知識的

    [1] [2] 下一頁

    下頁更精彩:1 2 3 4 下一頁

    成年人视频在线视频